Tuesday, 21 November 2017

Moving average sales forecast excel


Moving Average Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no GoogleMoving Average Forecasting Introduction. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como variante Dim Counter Como Inteiro Dim Acumulação como único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha de modo que o resultado da computação apareça onde ele deve gostar da seguinte. Implementação da planilha de ajuste sazonal e suavização exponencial É fácil executar o ajuste sazonal e ajustar os modelos de suavização exponencial usando o Excel. As imagens e gráficos de tela a seguir são extraídos de uma planilha que foi configurada para ilustrar o ajuste sazonal multiplicativo e a suavização exponencial linear nos seguintes dados de vendas trimestrais do Outboard Marine: Para obter uma cópia do próprio arquivo de planilha, clique aqui. A versão de suavização exponencial linear que será usada aqui para fins de demonstração é a versão de Brown8217s, simplesmente porque ela pode ser implementada com uma única coluna de fórmulas e há apenas uma constante de suavização para otimizar. Normalmente é melhor usar a versão Holt8217s que tem constantes de suavização separadas para nível e tendência. O processo de previsão prossegue da seguinte forma: (i) primeiro os dados são ajustados sazonalmente (ii) então as previsões são geradas para os dados ajustados sazonalmente por meio de suavização exponencial linear e (iii) finalmente as previsões são ajustadas sazonalmente para obter previsões para a série original . O processo de ajuste sazonal é realizado nas colunas D a G. O primeiro passo no ajuste sazonal é calcular uma média móvel centrada (realizada aqui na coluna D). Isto pode ser feito tomando a média de duas médias anuais que são compensadas por um período em relação um ao outro. (Uma combinação de duas médias de compensação ao invés de uma única média é necessária para fins de centralização quando o número de estações é par.) O próximo passo é calcular a relação com a média móvel - i. e. Os dados originais divididos pela média móvel em cada período - o que é realizado aqui na coluna E. (Isso também é chamado de componente quottrend-cyclequot do padrão, na medida em que os efeitos da tendência e do ciclo de negócios podem ser considerados como sendo tudo isso Permanece após a média de dados de um ano inteiro. Naturalmente, as mudanças mês a mês que não são devido à sazonalidade poderia ser determinada por muitos outros fatores, mas a média de 12 meses suaviza sobre eles em grande medida.) O índice sazonal estimado para cada estação é calculado pela primeira média de todas as razões para essa estação particular, que é feita nas células G3-G6 usando uma fórmula AVERAGEIF. As razões médias são então redimensionadas de modo que somam exatamente 100 vezes o número de períodos em uma estação, ou 400, neste caso, o que é feito nas células H3-H6. Abaixo na coluna F, as fórmulas VLOOKUP são usadas para inserir o valor do índice sazonal apropriado em cada linha da tabela de dados, de acordo com o trimestre do ano que ele representa. A média móvel centrada e os dados ajustados sazonalmente acabam parecidos com isto: Note que a média móvel normalmente se parece com uma versão mais lisa da série ajustada sazonalmente, e é mais curta em ambas as extremidades. Uma outra planilha no mesmo arquivo do Excel mostra a aplicação do modelo de suavização exponencial linear aos dados dessazonalizados, começando na coluna G. Um valor para a constante de alisamento (alfa) é inserido acima da coluna de previsão (aqui, na célula H9) e Por conveniência é atribuído o nome do intervalo quotAlpha. quot (O nome é atribuído usando o comando quotInsert / Name / Createquot). O modelo LES é inicializado definindo as duas primeiras previsões iguais ao primeiro valor real da série ajustada sazonalmente. A fórmula usada aqui para a previsão de LES é a forma recursiva de equação única do modelo Brown8217s: Esta fórmula é inserida na célula correspondente ao terceiro período (aqui, célula H15) e copiada para baixo a partir daí. Observe que a previsão do LES para o período atual se refere às duas observações precedentes e aos dois erros de previsão anteriores, bem como ao valor de alfa. Assim, a fórmula de previsão na linha 15 refere-se apenas a dados que estavam disponíveis na linha 14 e anteriores. (É claro que, se desejássemos usar a suavização linear simples em vez de linear, poderíamos substituir a fórmula SES aqui. Também poderíamos usar Holt8217s ao invés do modelo LES de Brown8217s, o que exigiria mais duas colunas de fórmulas para calcular o nível ea tendência Que são usados ​​na previsão.) Os erros são computados na coluna seguinte (aqui, coluna J) subtraindo as previsões dos valores reais. O erro médio quadrático é calculado como a raiz quadrada da variância dos erros mais o quadrado da média. (Isto decorre da identidade matemática: VARIANCE MSE (erros) (AVERAGE (erros)) 2.) No cálculo da média e variância dos erros nesta fórmula, os dois primeiros períodos são excluídos porque o modelo não começa a prever até O terceiro período (linha 15 na planilha). O valor ótimo de alfa pode ser encontrado alterando manualmente alfa até que o RMSE mínimo seja encontrado, ou então você pode usar o quotSolverquot para executar uma minimização exata. O valor de alpha que o Solver encontrado é mostrado aqui (alpha0.471). Geralmente é uma boa idéia traçar os erros do modelo (em unidades transformadas) e também calcular e traçar suas autocorrelações em defasagens de até uma estação. Aqui está um gráfico de séries temporais dos erros (ajustados sazonalmente): As autocorrelações de erro são calculadas usando a função CORREL () para calcular as correlações dos erros com elas mesmas retardadas por um ou mais períodos - os detalhes são mostrados no modelo de planilha . Aqui está um gráfico das autocorrelações dos erros nos primeiros cinco lags: As autocorrelações nos intervalos 1 a 3 são muito próximas de zero, mas a espiga no retardo 4 (cujo valor é 0,35) é ligeiramente problemática - sugere que a Processo de ajuste sazonal não foi completamente bem sucedido. No entanto, é apenas marginalmente significativo. 95 para determinar se as autocorrelações são significativamente diferentes de zero são mais ou menos 2 / SQRT (n-k), onde n é o tamanho da amostra e k é o atraso. Aqui n é 38 e k varia de 1 a 5, então a raiz quadrada de - n-menos-k é de cerca de 6 para todos eles e, portanto, os limites para testar a significância estatística de desvios de zero são aproximadamente mais - Ou-menos 2/6, ou 0,33. Se você variar o valor de alfa à mão neste modelo do Excel, você pode observar o efeito sobre as parcelas de tempo de série e de autocorrelação dos erros, bem como sobre o erro raiz-médio-quadrado, que será ilustrado abaixo. Na parte inferior da planilha, a fórmula de previsão é quotbootstrappedquot para o futuro, simplesmente substituindo as previsões de valores reais no ponto onde os dados reais se esgotou - i. e. Onde o futuro começa. (Em outras palavras, em cada célula onde um valor de dados futuro ocorreria, uma referência de célula é inserida que aponta para a previsão feita para esse período.) Todas as outras fórmulas são simplesmente copiadas para baixo de cima: Observe que os erros para previsões de O futuro são todos computados como sendo zero. Isso não significa que os erros reais serão zero, mas sim apenas reflete o fato de que para fins de previsão estamos assumindo que os dados futuros serão iguais às previsões em média. As previsões de LES resultantes para os dados ajustados sazonalmente são as seguintes: Com este valor específico de alfa, que é ideal para as previsões de um período antecipado, a tendência projetada é ligeiramente alta, refletindo a tendência local observada nos últimos 2 anos ou então. Para outros valores de alfa, uma projeção de tendência muito diferente pode ser obtida. Geralmente é uma boa idéia ver o que acontece com a projeção de tendência de longo prazo quando alfa é variado, porque o valor que é melhor para previsão de curto prazo não será necessariamente o melhor valor para prever o futuro mais distante. Por exemplo, aqui está o resultado que é obtido se o valor de alfa é manualmente definido como 0.25: A tendência de longo prazo projetada é agora negativa em vez de positiva Com um menor valor de alfa, o modelo está colocando mais peso em dados mais antigos em A sua estimativa do nível e da tendência actuais e as suas previsões a longo prazo reflectem a tendência descendente observada nos últimos 5 anos, em vez da tendência ascendente mais recente. Este gráfico também ilustra claramente como o modelo com um valor menor de alfa é mais lento para responder a pontos de quoturno nos dados e, portanto, tende a fazer um erro do mesmo sinal para muitos períodos em uma linha. Seus erros de previsão de 1 passo são maiores em média do que aqueles obtidos antes (RMSE de 34,4 em vez de 27,4) e fortemente positivamente autocorrelacionados. A autocorrelação lag-1 de 0,56 excede largamente o valor de 0,33 calculado acima para um desvio estatisticamente significativo de zero. Como uma alternativa ao avanço do valor de alfa para introduzir mais conservadorismo em previsões de longo prazo, um fator quottrend de amortecimento é às vezes adicionado ao modelo para fazer a tendência projetada aplanar após alguns períodos. A etapa final na construção do modelo de previsão é a de igualar as previsões de LES, multiplicando-as pelos índices sazonais apropriados. Dessa forma, as previsões reseasonalized na coluna I são simplesmente o produto dos índices sazonais na coluna F e as previsões de LES estacionalmente ajustadas na coluna H. É relativamente fácil calcular intervalos de confiança para as previsões de um passo à frente feitas por este modelo: primeiro Calcular o RMSE (erro quadrático médio, que é apenas a raiz quadrada do MSE) e, em seguida, calcular um intervalo de confiança para a previsão ajustada sazonalmente, adicionando e subtraindo duas vezes o RMSE. (Em geral, um intervalo de confiança de 95 para uma previsão de um período antecipado é aproximadamente igual à previsão de ponto mais ou menos duas vezes o desvio padrão estimado dos erros de previsão, supondo que a distribuição do erro é aproximadamente normal eo tamanho da amostra É grande o suficiente, digamos, 20 ou mais. Aqui, o RMSE em vez do desvio padrão da amostra dos erros é a melhor estimativa do desvio padrão de futuros erros de previsão porque leva bias, bem como variações aleatórias em conta.) Os limites de confiança Para a previsão ajustada sazonalmente são então reseasonalized. Juntamente com a previsão, multiplicando-os pelos índices sazonais apropriados. Neste caso o RMSE é igual a 27,4 e a previsão ajustada sazonalmente para o primeiro período futuro (Dec-93) é 273,2. O intervalo de confiança ajustado sazonalmente é de 273,2-227,4 218,4 para 273,2227,4 328,0. Multiplicando esses limites por Decembers índice sazonal de 68,61. Obtemos limites de confiança inferior e superior de 149,8 e 225,0 em torno da previsão de ponto Dec-93 de 187,4. Os limites de confiança para as previsões de mais de um período de tempo em geral aumentarão à medida que o horizonte de previsão aumentar, devido à incerteza quanto ao nível e à tendência, bem como aos fatores sazonais, mas é difícil computá-los em geral por métodos analíticos. (A maneira apropriada de calcular limites de confiança para a previsão de LES é usando a teoria ARIMA, mas a incerteza nos índices sazonais é outra questão.) Se você quer um intervalo de confiança realista para uma previsão mais de um período à frente, tomando todas as fontes de A sua melhor aposta é usar métodos empíricos: por exemplo, para obter um intervalo de confiança para uma previsão de duas etapas à frente, você poderia criar outra coluna na planilha para calcular uma previsão de duas etapas para cada período ( Por bootstrapping a previsão one-step-ahead). Em seguida, calcule o RMSE dos erros de previsão em duas etapas e use isso como base para um intervalo de confiança de duas etapas. Calcular a média móvel no Excel Neste pequeno tutorial, você aprenderá a calcular rapidamente uma média móvel simples No Excel, quais funções usar para obter a média móvel para os últimos N dias, semanas, meses ou anos e como adicionar uma linha de tendência de média móvel para um gráfico do Excel. Em alguns artigos recentes, nós demos uma olhada no cálculo da média no Excel. Se você está seguindo nosso blog, você já sabe como calcular uma média normal e quais funções usar para encontrar a média ponderada. No tutorial de hoje, vamos discutir duas técnicas básicas para calcular a média móvel no Excel. O que é a média móvel De um modo geral, a média móvel (também conhecida como média móvel, média móvel ou média móvel) pode ser definida como uma série de médias para diferentes subconjuntos do mesmo conjunto de dados. É freqüentemente usado em estatísticas, previsões econômicas e meteorológicas ajustadas sazonalmente para entender as tendências subjacentes. Na negociação de ações, média móvel é um indicador que mostra o valor médio de um título ao longo de um determinado período de tempo. Nos negócios, é uma prática comum para calcular uma média móvel de vendas para os últimos 3 meses para determinar a tendência recente. Por exemplo, a média móvel das temperaturas de três meses pode ser calculada tomando a média das temperaturas de janeiro a março, depois a média das temperaturas de fevereiro a abril, depois de março a maio, e assim por diante. Existem diferentes tipos de média móvel, como simples (também conhecido como aritmética), exponencial, variável, triangular e ponderada. Neste tutorial, estaremos analisando a média móvel mais comumente utilizada. Calculando a média móvel simples no Excel No geral, existem duas maneiras de obter uma média móvel simples no Excel - usando fórmulas e opções de linha de tendência. Os exemplos seguintes demonstram ambas as técnicas. Exemplo 1. Calcular a média móvel durante um determinado período de tempo Uma média móvel simples pode ser calculada em nenhum momento com a função MÉDIA. Suponha que você tenha uma lista de temperaturas médias mensais na coluna B e queira encontrar uma média móvel de 3 meses (como mostrado na imagem acima). Escreva uma fórmula média usual para os primeiros 3 valores e insira-a na linha correspondente ao 3º valor da parte superior (célula C4 neste exemplo) e, em seguida, copie a fórmula para outras células da coluna: Coluna com uma referência absoluta (como B2) se você desejar, mas não se esqueça de usar referências de linha relativa (sem o sinal) para que a fórmula ajusta corretamente para outras células. Lembrando que uma média é calculada adicionando valores e dividindo a soma pelo número de valores a serem calculados, você pode verificar o resultado usando a fórmula SUM: Exemplo 2. Obter média móvel para os últimos N dias / semanas / Meses / anos em uma coluna Supondo que você tenha uma lista de dados, por exemplo Venda ou cotações de ações, e você quer saber a média dos últimos 3 meses em qualquer ponto do tempo. Para isso, você precisa de uma fórmula que recalcule a média assim que você digitar um valor para o próximo mês. Qual função do Excel é capaz de fazer isso O bom AVERAGE antigo em combinação com OFFSET e COUNT. MÉDIA (OFFSET (NÚMERO DE COUNT (NÚMERO COMPLETO) - N, 0, N, 1)) Onde N é o número dos últimos dias / semanas / meses / anos a incluir na média. Não sei como usar essa fórmula de média móvel em planilhas do Excel O exemplo a seguir tornará as coisas mais claras. Supondo que os valores para a média estão na coluna B começando na linha 2, a fórmula seria a seguinte: E agora, vamos tentar entender o que esta fórmula de média móvel Excel está realmente fazendo. A COUNT função COUNT (B2: B100) conta quantos valores já estão inseridos na coluna B. Começamos a contar em B2 porque a linha 1 é o cabeçalho da coluna. A função OFFSET leva a célula B2 (o primeiro argumento) como ponto de partida e desloca a contagem (o valor retornado pela função COUNT) movendo 3 linhas para cima (-3 no 2º argumento). Como resultado, retorna a soma de valores em um intervalo composto por 3 linhas (3 no 4 º argumento) e 1 coluna (1 no último argumento), que é o mais tardar 3 meses que queremos. Finalmente, a soma retornada é passada para a função MÉDIA para calcular a média móvel. Dica. Se estiver trabalhando com planilhas continuamente atualizáveis ​​onde novas linhas provavelmente serão adicionadas no futuro, forneça um número suficiente de linhas à função COUNT para acomodar novas entradas possíveis. Não é um problema se você incluir mais linhas do que realmente necessário contanto que você tenha a primeira célula direita, a função COUNT irá descartar todas as linhas vazias de qualquer maneira. Como você provavelmente notou, a tabela neste exemplo contém dados para apenas 12 meses, e ainda o intervalo B2: B100 é fornecido para COUNT, apenas para estar no lado de salvar :) Exemplo 3. Obter média móvel para os últimos valores de N em Uma linha Se você deseja calcular uma média móvel para os últimos N dias, meses, anos, etc. na mesma linha, você pode ajustar a fórmula Offset desta maneira: Supondo que B2 é o primeiro número na linha e você quer Para incluir os últimos 3 números na média, a fórmula tem a seguinte forma: Criando um gráfico de média móvel do Excel Se você já criou um gráfico para seus dados, adicionar uma linha de tendência de média móvel para esse gráfico é uma questão de segundos. Para isso, vamos usar o recurso Excel Trendline e seguir as etapas detalhadas abaixo. Para este exemplo, criei um gráfico de colunas em 2D (grupo Inserir guia gt Gráficos) para nossos dados de vendas: E agora, queremos visualizar a média móvel por 3 meses. No Excel 2018 e no Excel 2007, vá para Layout gt Trendline gt Mais Opções da Trendline. Dica. Se você não precisa especificar os detalhes, como o intervalo de média móvel ou os nomes, você pode clicar em Design gt Adicionar elemento gráfico gt Trendline gt Média móvel para o resultado imediato. O painel Format Trendline será aberto no lado direito da planilha no Excel 2017 ea caixa de diálogo correspondente será exibida no Excel 2018 e 2007. Para refinar o bate-papo, você pode alternar para a linha Fill amp ou a guia Effects no O painel Format Trendline e jogar com diferentes opções, como tipo de linha, cor, largura, etc. Para análise de dados poderosa, você pode querer adicionar algumas linhas de tendência de média móvel com intervalos de tempo diferentes para ver como a tendência evolui. A seguinte imagem mostra as linhas de tendência de média móvel de 2 meses (verde) e 3 meses (tijolo vermelho): Bem, isso é tudo sobre como calcular a média móvel no Excel. A planilha de exemplo com fórmulas de média móvel e linha de tendência está disponível para download - planilha de Moving Average. Agradeço a leitura e espero vê-lo na próxima semana. Você também pode estar interessado em: média móvel de dados de séries temporais (observações igualmente espaçadas no tempo) de vários períodos consecutivos. Chamado de movimento porque é continuamente recalculado à medida que novos dados se tornam disponíveis, ele progride caindo o valor mais antigo e adicionando o valor mais recente. Por exemplo, a média móvel das vendas de seis meses pode ser calculada tomando a média das vendas de janeiro a junho, depois a média das vendas de fevereiro a julho, depois de março a agosto, e assim por diante. As médias móveis (1) reduzem o efeito de variações temporárias nos dados, (2) melhoram o ajuste dos dados para uma linha (um processo chamado suavização) para mostrar a tendência dos dados mais claramente e (3) realçam qualquer valor acima ou abaixo do valor tendência. Se você está calculando algo com variação muito alta o melhor que você pode ser capaz de fazer é descobrir a média móvel. Eu queria saber qual era a média móvel dos dados, então eu teria uma melhor compreensão de como estávamos fazendo. Quando você está tentando descobrir alguns números que mudam muitas vezes o melhor que você pode fazer é calcular a média móvel. O melhor de BusinessDictionary, entregue diariamente

No comments:

Post a Comment